1.點擊下面按鈕復制微信號
點擊復制微信號
上海威才企業管理咨詢有限公司
隨著大數據分析的需求越來越旺盛,大數據分析工具也越來越琳瑯滿目,然而,絕大多數的分析工具都只具有單一用途,無法滿足企業的復雜的多樣化的全面的業務分析需求,因此分析工具的選擇成為了一個挑戰。
一個良好的分析工具必須滿足如下要求:
易學易用易操作。
分析效率要高。
滿足業務分析需求。
如果要說前兩個要求,顯然類似于Excel/Power BI/Tableau等工具都是滿足要求的,但此類工具卻無法解決更復雜的業務問題,比如影響因素分析、客戶行為預測/精準營銷、客戶群劃分、產品交叉銷售、產品銷量預測等等,這些需求用Excel/PBI等工具就難以勝任了,需要用到更高級的數據挖掘工具,比如IBM SPSS工具。IBM SPSS工具是面向非專業人士的高級的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決的業務問題更豐富,提供了更加強大的業務數據分析功能,并且它封裝了具體的分析算法,即使你沒有深厚的技能能力,也能夠勝任復雜的數據分析和挖掘。
本課程面向數據分析部等專門負責數據分析與挖掘的人士,專注大數據挖掘工具SPSS Statistics的培訓。
了解大數據挖掘的標準過程和挖掘步驟。
掌握基本的統計分析,常用的影響因素分析。
理解數據挖掘的常見模型,原理及適用場景。
熟練掌握SPSS基本操作,能利用SPSS解決實際的商業問題。
數據挖掘標準流程
數據挖掘概述
數據挖掘的標準流程(CRISP-DM)
商業理解
數據準備
數據理解
模型建立
模型評估
模型應用
案例:客戶流失預測及客戶挽留
數據集的基本知識
存儲類型
統計類型
角度
SPSS工具簡介
數據預處理過程
數據預處理的基本步驟
數據讀取、數據理解、數據處理、變量處理、探索分析
數據預處理的主要任務
數據集成:多個數據集的合并
數據清理:異常值的處理
數據處理:數據篩選、數據精簡、數據平衡
變量處理:變量變換、變量派生、變量精簡
數據歸約:實現降維,避免維災難
數據集成
外部數據讀入:Txt/Excel/SPSS/Database
數據追加(添加數據)
變量合并(添加變量)
數據理解(異常數據處理)
取值范圍限定
重復值處理
無效值/錯誤值處理
缺失值處理
離群值/極端值處理
數據質量評估
數據準備:數據處理
數據篩選:數據抽樣/選擇(減少樣本數量)
數據精簡:數據分段/離散化(減少變量的取值個數)
數據平衡:正反樣本比例均衡
數據準備:變量處理
變量變換:原變量取值更新,比如標準化
變量派生:根據舊變量生成新的變量
變量精簡:降維,減少變量個數
數據降維
常用降維方法
如何確定變量個數
特征選擇:選擇重要變量,剔除不重要的變量
從變量本身考慮
從輸入變量與目標變量的相關性考慮
對輸入變量進行合并
因子分析(主成分分析)
因子分析的原理
因子個數如何選擇
如何解讀因子含義
案例:提取影響電信客戶流失的主成分分析
數據探索性分析
常用統計指標分析
單變量:數值變量/分類變量
雙變量:交叉分析/相關性分析
多變量:特征選擇、因子分析
演練:描述性分析(頻數、描述、探索、分類匯總)
數據可視化篇
數據可視化的原則
常用可視化工具
常用可視化圖形
柱狀圖、條形圖、餅圖、折線圖、箱圖、散點圖等
圖形的表達及適用場景
演練:各種圖形繪制
影響因素分析篇
問題:如何判斷一個因素對另一個因素有影響?比如營銷費用是否會影響銷售額?產品價格是否會影響銷量?產品的陳列位置是否會影響銷量?
風險控制的關鍵因素有哪些?如何判斷?
影響因素分析的常見方法
相關分析(衡量變量間的的相關性)
問題:這兩個屬性是否會相互影響?影響程度大嗎?營銷費用會影響銷售額嗎?
什么是相關關系
相關系數:衡量相關程度的指標
相關系數的三個計算公式
相關分析的假設檢驗
相關分析的基本步驟
相關分析應用場景
演練:體重與腰圍的關系
演練:營銷費用會影響銷售額嗎
演練:哪些因素與汽車銷量有相關性
演練:通信費用與開通月數的相關分析
案例:酒樓生意好壞與報紙銷量的相關分析
偏相關分析
距離相關分析
方差分析
問題:哪些才是影響銷量的關鍵因素?
方差分析解決什么問題
方差分析種類:單因素/雙因素可重復/雙因素無重復
方差分析的應用場景
方差分析的原理與步驟
如何解決方差分析結果
演練:終端擺放位置與終端銷量有關嗎?
演練:開通月數驛客戶流失的影響分析
演練:客戶學歷對消費水平的影響分析
演練:廣告和價格是影響終端銷量的關鍵因素嗎
演練:營業員的性別、技能級別產品銷量有影響嗎?
案例:2015年大學生工資與父母職業的關系
案例:醫生洗手與嬰兒存活率的關系
演練:尋找影響產品銷量的關鍵因素
多因素方差分析原理
多因素方差結果的解讀
演練:廣告形式、地區對銷量的影響因素分析(多因素)
協方差分析原理
演練:飼料對生豬體重的影響分析(協方差分析)
列聯分析(兩類別變量的相關性分析)
交叉表與列聯表
卡方檢驗的原理
卡方檢驗的幾個計算公式
列聯表分析的適用場景
案例:套餐類型對客戶流失的影響分析
案例:學歷對業務套餐偏好的影響分析
案例:行業/規模對風控的影響分析
數據建模過程篇
預測建模六步法
選擇模型:基于業務選擇恰當的數據模型
屬性篩選:選擇對目標變量有顯著影響的屬性來建模
訓練模型:采用合適的算法對模型進行訓練,尋找到最合適的模型參數
評估模型:進行評估模型的質量,判斷模型是否可用
優化模型:如果評估結果不理想,則需要對模型進行優化
應用模型:如果評估結果滿足要求,則可應用模型于業務場景
數據挖掘常用的模型
數值預測模型:回歸預測、時序預測等
分類預測模型:邏輯回歸、決策樹、神經網絡、支持向量機等
市場細分:聚類、RFM、PCA等
產品推薦:關聯分析、協同過濾等
產品優化:回歸、隨機效用等
產品定價:定價策略/最優定價等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關性判斷
因子合并(PCA等)
IV值篩選(評分卡使用)
基于信息增益判斷(決策樹使用)
模型評估
模型質量評估指標:R^2、正確率/查全率/查準率/特異性等
預測值評估指標:MAD、MSE/RMSE、MAPE、概率等
模型評估方法:留出法、K拆交叉驗證、自助法等
其它評估:過擬合評估
模型優化
優化模型:選擇新模型/修改模型
優化數據:新增顯著自變量
優化公式:采用新的計算公式
模型實現算法(暫略)
好模型是優化出來的
案例:通信客戶流失分析及預警模型
數值預測模型篇
問題:如何預測產品的銷量/銷售金額?如果產品跟隨季節性變動,該如何預測?新產品上市,如果評估銷量上限及銷售增速?
銷量預測與市場預測——讓你看得更遠
回歸預測/回歸分析
問題:如何預測未來的銷售量(定量分析)?
回歸分析的基本原理和應用場景
回歸分析的種類(一元/多元、線性/曲線)
得到回歸方程的幾種常用方法
回歸分析的五個步驟與結果解讀
回歸預測結果評估(如何評估預測質量,如何選擇最佳回歸模型)
演練:散點圖找推廣費用與銷售額的關系(一元線性回歸)
演練:推廣費用、辦公費用與銷售額的關系(多元線性回歸)
演練:讓你的營銷費用預算更準確
演練:如何選擇最佳的回歸預測模型(曲線回歸)
帶分類變量的回歸預測
演練:汽車季度銷量預測
演練:工齡、性別與終端銷量的關系
演練:如何評估銷售目標與資源配置(營業廳)
時序預測
問題:隨著時間變化,未來的銷量變化趨勢如何?
時序分析的應用場景(基于時間的變化規律)
移動平均MA的預測原理
指數平滑ES的預測原理
自回歸移動平均ARIMA模型
如何評估預測值的準確性?
案例:銷售額的時序預測及評估
演練:汽車銷量預測及評估
演練:電視機銷量預測分析
演練:上海證券交易所綜合指數收益率序列分析
演練:服裝銷售數據季節性趨勢預測分析
季節性預測模型
季節性回歸模型的參數
常用季節性預測模型(相加、相乘)
案例:美國航空旅客里程的季節性趨勢分析
案例:產品銷售季節性趨勢預測分析
新產品預測模型與S曲線
如何評估銷量增長的拐點
珀爾曲線與龔鉑茲曲線
案例:如何預測產品的銷售增長拐點,以及銷量上限
演戲:預測IPad產品的銷量
自定義模型(如何利用規劃求解進行自定義模型)
案例:如何對餐廳客流量進行建模及模型優化
回歸模型優化篇
回歸模型的基本原理
三個基本概念:總變差、回歸變差、剩余變差
方程的顯著性檢驗:是否可以做回歸分析?
擬合優度檢驗:回歸模型的質量評估?
因素的顯著性檢驗:自變量是否可用?
理解標準誤差的含義:預測的準確性?
模型優化思路:尋找最佳回歸擬合線
如何處理異常數據(殘差與異常值排除)
如何剔除非顯著因素(因素顯著性檢驗)
如何進行非線性關系檢驗
如何進行相互作用檢驗
如何進行多重共線性檢驗
如何檢驗誤差項
如何判斷模型過擬合
案例:模型優化案例
分類預測模型篇
問題:如何評估客戶購買產品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產品或業務?
分類模型概述
常見分類預測模型
評估分類模型的常用指標
正確率、查全率/查準率、特異性等
邏輯回歸模型(LR)
邏輯回歸模型原理及適用場景
邏輯回歸種類:二項/多項邏輯回歸
如何解讀邏輯回歸方程
案例:如何評估用戶是否會購買某產品(二項邏輯回歸)
消費者品牌選擇模型分析
案例:多品牌選擇模型分析(多項邏輯回歸)
分類決策樹(DT)
問題:如何預測客戶行為?如何識別潛在客戶?
風控:如何識別欠貸者的特征,以及預測欠貸概率?
客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?
決策樹分類簡介
如何評估分類性能?
案例:美國零售商(Target)如何預測少女懷孕
演練:識別銀行欠貨風險,提取欠貸者的特征
構建決策樹的三個關鍵問題
如何選擇最佳屬性來構建節點
如何分裂變量
修剪決策樹
選擇最優屬性
熵、基尼索引、分類錯誤
屬性劃分增益
如何分裂變量
多元劃分與二元劃分
連續變量離散化(最優劃分點)
修剪決策樹
剪枝原則
預剪枝與后剪枝
構建決策樹的四個算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優分類模型?
案例:商場酸奶購買用戶特征提取
案例:電信運營商客戶流失預警與客戶挽留
案例:識別拖欠銀行貨款者的特征,避免不良貨款
案例:識別電信詐騙者嘴臉,讓通信更安全
人工神經網絡(ANN)
神經網絡概述
神經網絡基本原理
神經網絡的結構
神經網絡的建立步驟
神經網絡的關鍵問題
BP反向傳播網絡(MLP)
徑向基網絡(RBF)
案例:評估銀行用戶拖欠貨款的概率
聯系電話:4006-900-901
微信咨詢:威才客服
企業郵箱:shwczx@www.u3069.cn
深耕中國制造業
助力企業轉型
2021年度咨詢客戶數
資深實戰導師
客戶滿意度
續單和轉介紹